top of page

Theses (4)

  • Corina Keller, Generalized character varieties and quantization via factorization homology, [] [TEL]. Defended on Feb. 3, 2023. 

  • Albin Grataloup, Derived symplectic reduction and equivariant geometry, [][arXiv]. Defended on Dec. 16, 2022. 

  • Pelle Steffens, Derived differential geometry. Defended on Oct. 4, 2022

  • Timothy Hosgood, Chern classes of coherent analytic sheaves: a simplicial approach, [TEL]. Defended on June 25, 2020


Published Papers (14)

Accepted Papers (3)

  • Damien Calaque & Victor Roca i Lucio, Associators from an operadic point of view, [arXiv]. 
    To appear in "Higher structures and operadic calculus", Advanced Courses in Mathematics CRM Barcelona, Birkhauser. 

  • Damien Calaque, Derived symplectic geometry, [arXiv]. 
    Invited contribution to the 2nd edition of the Encyclopedia of Mathematical Physics

  • Damien Calaque, Rune Haugseng & Claudia Scheimbauer, The AKSZ construction in derived algebraic geometry as an extended topological field theory, [arXiv].
    To appear in Memoirs of the American Mathematical Society

Preprints (15)

  • Pelle Steffens, Representability of elliptic moduli problems in derived C^{\infty}-geometry, [arXiv]. 

  • Damien Calaque, Giovanni Felder, Gabriele Rembado & Richard Wentworth, Wild orbits and generalised singularity modules: stratifications and quantisation [arXiv]. 

  • Ricardo Campos & Albin Grataloup, Operadic deformation theory, [arXiv]. 

  • Tristan Bozec, Maxime Fairon & Anne Moreau, Functorial constructions related to double Poisson vertex algebras, [arXiv]. 

  • Pelle Steffens, Derived C^{\infty}-geometry I: Foundations, [arXiv]. 

  • Hiraoki Karuo & Julien Korinman, Classification of semi-weight representations of reduced stated skein algebras, [arXiv]. 

  • David Kern, Monoidal envelopes and Grothendieck construction for dendroidal Segal objects, [arXiv]. 

  • Hiraoki Karuo & Julien Korinman, Azumaya loci of skein algebras, [arXiv]. 

  • Julien Korinman & Jun Murakami, Relating quantum character varieties and skein modules, [arXiv]. 

  • David Kern, Etienne Mann, Cristina Manolache & Renata Picciotto, Derived moduli of sections and push-forwards, [arXiv]. 

  • Lukas Brantner, Ricardo Campos & Joost Nuiten, PD operads and explicit partition Lie algebras, [arXiv]. 

  • Damien Calaque, Ricardo Campos & Joost Nuiten, Lie algebroids are curved Lie algebras, [arXiv]. 

  • Yonathan Harpaz, Joost Nuiten & Matan Prasma, On k-invariants for (\infty,n)-categories,

  • Damien Calaque & Martin Gonzalez, A moperadic approach to cyclotomic associators, [arXiv]. 

  • David Carchedi & Pelle Steffens, On the universal property of derived manifolds, [arXiv]. 

Recorded Talks (13)

  • 21 September 2023, Damien Calaque, Shifted symplectic reduction, [youtube]. 

  • 18 July 2023, Damien Calaque, Relative critical loci, Calabi-Yau completions, and a lagrangian in the Hilbet scheme of the plane, [youtube]. 

  • 4 July 2023, Damien Calaque, Shifted symplectic reduction, [youtube]. 

  • 14 September 2022, Damien Calaque, Comparing Calabi-Yau and quasi-bisymplectic structures on multiplicative preprojective algebras, [youtube]. 

  • 7 June 2022, Damien Calaque, Vertex models and E_n-algebras, [link]. 

  • 8 November 2021, Albin Grataloup, A derived geometric perspective on the BV complex, [youtube].

  • 22 October 2021, Corina Keller, Twisted character varieties and quantization via factorization homology, [link]. 

  • 16 July 2021, Pelle Steffens, Field theory from a derived geometric perspective: global elliptic moduli problems, [youtube]. 

  • 16 July 2021, Albin Grataloup, A derived geometric perspective on the BV construction, [youtube]. 

  • 21 May 2021, Damien Calaque, Vertex models and E_n-algebras: upside down renormalization, [link]. 

  • 14 May 2021, Joost Nuiten, Lie algebroids as curved Lie algebras, [youtube]. 

  • 1 September 2020, Timothy Hosgood, Simplicial Chern-Weil theory for coherent analytic sheaves, [youtube]. 

  • 2 June 2020, Timothy Hosgood, Connections and curvature, [youtube]. 

bottom of page